3.3.100 \(\int \frac {1}{(c x)^{5/2} \sqrt {\frac {a}{x^3}+b x^n}} \, dx\)

Optimal. Leaf size=54 \[ -\frac {2 \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{\sqrt {a} c^2 (n+3) \sqrt {c x}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2031, 2029, 206} \begin {gather*} -\frac {2 \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{\sqrt {a} c^2 (n+3) \sqrt {c x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((c*x)^(5/2)*Sqrt[a/x^3 + b*x^n]),x]

[Out]

(-2*Sqrt[x]*ArcTanh[Sqrt[a]/(x^(3/2)*Sqrt[a/x^3 + b*x^n])])/(Sqrt[a]*c^2*(3 + n)*Sqrt[c*x])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2029

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rule 2031

Int[((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracPar
t[m])/x^FracPart[m], Int[x^m*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && IntegerQ[p + 1/2]
 && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0]

Rubi steps

\begin {align*} \int \frac {1}{(c x)^{5/2} \sqrt {\frac {a}{x^3}+b x^n}} \, dx &=\frac {\sqrt {x} \int \frac {1}{x^{5/2} \sqrt {\frac {a}{x^3}+b x^n}} \, dx}{c^2 \sqrt {c x}}\\ &=-\frac {\left (2 \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {1}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{c^2 (3+n) \sqrt {c x}}\\ &=-\frac {2 \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{\sqrt {a} c^2 (3+n) \sqrt {c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 68, normalized size = 1.26 \begin {gather*} -\frac {2 x \sqrt {a+b x^{n+3}} \tanh ^{-1}\left (\frac {\sqrt {a+b x^{n+3}}}{\sqrt {a}}\right )}{\sqrt {a} (n+3) (c x)^{5/2} \sqrt {\frac {a}{x^3}+b x^n}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((c*x)^(5/2)*Sqrt[a/x^3 + b*x^n]),x]

[Out]

(-2*x*Sqrt[a + b*x^(3 + n)]*ArcTanh[Sqrt[a + b*x^(3 + n)]/Sqrt[a]])/(Sqrt[a]*(3 + n)*(c*x)^(5/2)*Sqrt[a/x^3 +
b*x^n])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.20, size = 70, normalized size = 1.30 \begin {gather*} -\frac {2 \sqrt {a+b x^{n+3}} \tanh ^{-1}\left (\frac {\sqrt {a+b x^{n+3}}}{\sqrt {a}}\right )}{\sqrt {a} c (n+3) (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((c*x)^(5/2)*Sqrt[a/x^3 + b*x^n]),x]

[Out]

(-2*Sqrt[a + b*x^(3 + n)]*ArcTanh[Sqrt[a + b*x^(3 + n)]/Sqrt[a]])/(Sqrt[a]*c*(3 + n)*(c*x)^(3/2)*Sqrt[a/x^3 +
b*x^n])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(5/2)/(a/x^3+b*x^n)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {b x^{n} + \frac {a}{x^{3}}} \left (c x\right )^{\frac {5}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(5/2)/(a/x^3+b*x^n)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^n + a/x^3)*(c*x)^(5/2)), x)

________________________________________________________________________________________

maple [F]  time = 0.72, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (c x \right )^{\frac {5}{2}} \sqrt {b \,x^{n}+\frac {a}{x^{3}}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x)^(5/2)/(b*x^n+a/x^3)^(1/2),x)

[Out]

int(1/(c*x)^(5/2)/(b*x^n+a/x^3)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {b x^{n} + \frac {a}{x^{3}}} \left (c x\right )^{\frac {5}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(5/2)/(a/x^3+b*x^n)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^n + a/x^3)*(c*x)^(5/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{{\left (c\,x\right )}^{5/2}\,\sqrt {b\,x^n+\frac {a}{x^3}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c*x)^(5/2)*(b*x^n + a/x^3)^(1/2)),x)

[Out]

int(1/((c*x)^(5/2)*(b*x^n + a/x^3)^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)**(5/2)/(a/x**3+b*x**n)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________